SAMPLE SITE (FM). 3 MARCH 2017.

FM ANTENNA RECONSTITUTION

REPORT 1.1

1/ EXECUTIVE SUMMARY

Sixarms has been commissioned by the Client to verify the performance of the New VHF FM antenna installed at the Sample Site. The verification was made using an unmanned aerial vehicle (UAV) based survey system on the 3rd March 2017.

The FM antenna being surveyed is a newly installed ABC FM broadcast array antenna. It is an omni-directional array, with the VHF FM services being circularly polarised (i.e. Vertical and Horizontal). It consists of 16 panels, 4 levels with 4 faces FM antenna. The antenna has an aperture of 13.6m and is mounted on a mast, with the centre of the array at 88m above ground level.

The verification procedure involved the measurement of the Horizontal Radiation Pattern (HRP) on the main beam and a Vertical Radiation Pattern (VRP) on each of the 4 antenna faces for both the vertical and horizontal components of the circularly polarised antenna. This report concerns the FM antenna performance.

Measurement Findings:

- 1) The HRP's (both V&H components) are generally omnidirectional in nature. Minor differences in peaks and nulls were observed and are within the tolerances of this report.
- 2) The VRP's (both V&H components) did not differ significantly from the design. Variations in measured beamtilts versus designed beamtilts had less than 1dB effect on ERP values.
- 3) Combined V&H measured maximum ERP values (taking uncertainties into consideration) are within Regulator licenced ERP values.

In summary, there appears to be no significant differences between the design and what has been measured. No further investigation is needed.

CONTENTS

1/	Exe	Executive Summary2					
2/	Int	troduction	5				
3/	Re	sults and Plots	6				
3,	/1	VHF FM Antenna and Design Plots	6				
3,	/2	Vertical Component of HRP	7				
3,	/3	Vertical Component of VRP	7				
3,	/4	Horizontal Component of HRP	9				
3,	/5	Horizontal Component of VRP	9				
4/	4/ Conclusions						
App	Appendix 1: Transmission Parameters22						
Appendix 2: Equipment and Flight Parameters23							
Appendix 3: Uncertainty Calculations25							

DOCUMENT REVISION

Version	Date	Revision Details
1.0	3 March 2017	Initial Release

CONTACTS

SIXARMS
Jason Schreiber
RF Engineer
+61 437 502 068
Jason@Sixarms.com

ABBREVIATIONS

- AUT Antenna Under Test
- DTV/DVB-T Digital Television
- ERP Effective Radiated Power
- FM Frequency Modulation
- GPS Global Positioning System
- IMU Inertial Management Unit
- ITU International Telecommunication Union
- HRP Horizontal Radiation Patter
- RF Radio Frequency
- UAV Unmanned Aerial Vehicle
- VRP Vertical Radiation Pattern

VHF Very High Frequency

2/ INTRODUCTION

Sixarms has developed a method of commissioning broadcast antennas by measuring the radiation pattern from an airborne platform equipped with appropriate field strength, receive antenna, and positional measuring equipment.

This method is an efficient and accurate way to rapidly evaluate the antenna performance in both horizontal and vertical planes, as a high number of sample points can be acquired within a short time frame.

The measurement survey involves the following actions carried out during the flight:

- Field strength data acquisition with a calibrated receive antenna and field strength meter,
- Positional data acquisition of the UAVs location in 6-dimensional space with a GPS and IMU and barometer

The measured field strengths are acquired in a free space situation. The UAV measurement system will have two main objectives to complete once it is airborne. Firstly, to measure the VRP and secondly, to measure the HRP of the antenna (these measurements include the ERP). VRP runs are carried out from a static distance away from the mast in the far field, with an incremental vertical rise from below the antenna to above the antenna to capture the vertical pattern. HRP runs are carried out from a static height in relation to the antenna but at a slow fixed-distance orbit in the far-field to capture the horizontal pattern. The outcome is a complete characterisation and verification of the performance of the antenna being measured. This system is based on the *ITU Recommendation ITU-R SM.2056-1 "Airborne verification of antenna patterns of broadcasting stations"*.

The report that follows presents the measurements obtained on site on the 3rd March 2017 and compares them to the supplied design pattern and details any discrepancies or areas of interest.

3/ RESULTS AND PLOTS

The measurement survey was carried out on the 3rd March 2017. In total, 10 complete data sets were collected for each FM service operating on the new VHF FM antenna. This consisted of four vertical measurement runs and one horizontal measurement run, for both the vertical and horizontal components.

The actual flight paths and distances can be found in the Appendices but all flights were chosen to be approximately 120m from the transmission site to allow for measurements to be taken in the far-field. Most measurements experienced fluctuations in their values predominantly due to reflections off other structures as well as ground reflections within the vicinity of the measurement location. These fluctuations had minimal effect on the accuracy of the plots. All vertical flights were made between approximately 18 degrees below the horizon and 16 degrees above the horizon. Measurements of Face A (20°) were taken at 27° due to the vicinity of the public carpark.

The following sections outline the VRP and HRP measured plots and results and the plots have been organised according to depression angle (HRP) and azimuth (VRP). Included in the plots are:

- Normalised plots (E/Emax) and comparison with designed
- ERP (dBW) comparisons (helpful when calculating coverage predictions)

Transmission, reception and uncertainties for the measured antenna can be found in the Appendices.

3/1 VHF FM ANTENNA AND DESIGN PLOTS

The VHF antenna being surveyed is an ABC Manufactured FM array model number 123456-4x4D. It is a omnidirectional array operating from 88-108MHz. The antenna consists of 16 panels, 4 levels with 4 faces. The antenna has an aperture of 13.6m and is mounted on a mast, with the centre of the array at 88m above ground level.

All design patterns were taken out of the ABC handbook (number 12.76432.002) and were used as comparison against the measured data.

Diagrams of the design of the new FM antenna

3/2 VERTICAL COMPONENT OF HRP

Depression Angle	Plot	Туре	Service MHz	Results	Plot Number & Page	
10	V Del	Normalised (to Self)	92.90 93.90 100.90 101.70 105.70 106.50 107.30	Minor differences in direction of nulls and peaks, also minor differences in the size of the main lobes.	Plot 1 - 4	
1	V - Pol	ERP	92.90 93.90 100.90 101.70 105.70 106.50 107.30	45.2 dBW 44.3 dBW 40.6 dBW 39.6 dBW 45.1 dBW 35.2 dBW 41.8 dBW	Page 11	

3/3 VERTICAL COMPONENT OF VRP

Azimuth Plot		Туре	Service	Results (BeamTilt/ERP)	Plot Number & Page
27°		Normalised (to self)	92.90 93.90 100.90 101.70 105.70 106.50 107.30	2.0° 1.3° 0.5° 0.5° -0.3° 1.1° 1.3°	Plot 5 - 8
FACE A	V-Pol	ERP	92.90 93.90 100.90 101.70 105.70 106.50 107.30	42.0 dBW 41.9 dBW 38.3 dBW 37.2 dBW 42.3 dBW 32.8 dBW 39.6 dBW	Page 12
110°	V Pol	Normalised (to self)	92.90 93.90 100.90 101.70 105.70 106.50 107.30	1.2° 1.1° 1.0° 0.6° 1.1° 1.3°	Plot 9 - 12
FACE B	V-Pol	ERP	92.90 93.90 100.90 101.70 105.70 106.50 107.30	43.0 dBW 42.0 dBW 37.6 dBW 36.5 dBW 41.7 dBW 31.8 dBW 38.4 dBW	Page 15
200° FACE C	V-Pol	Normalised (to self) ERP	92.90 93.90 100.90 101.70 105.70 106.50 107.30 92.90 03.00	1.4° 0.8° 0.7° 0.5° 2.1° 1.2° 2.0° 42.5 dBW	Plot 13 - 16 Page 14
			100.90	42.3 dBW 38.9 dBW	

			101.70	38.3 dBW	
			105.70	43.6 dBW	
			106.50	33.8 dBW	
			107.30	40.3 dBW	
		Normalised	92.90	2.0°	
		(to self)	93.90	1.7°	
			100.90	1.0°	
			101.70	1.9°	
	V-Pol		105.70	1.9°	
			106.50	2.3°	
290°			107.30	2.1°	PIOL 17 - 20
FACE D		ERP	92.90	42.5 dBW	Page 15
			93.90	42.4 dBW	
			100.90	39.0 dBW	
			101.70	37.7 dBW	
			105.70	43.6 dBW	
			106.50	33.7 dBW	
			107.30	40.1 dBW	

Best fit polynomials have been used to smooth the data on VRPs.

3/4 HORIZONTAL COMPONENT OF HRP

Depression Angle	Plot Type		Service MHz	Results	Plot Number & Page
10	Normali (to Self) H - Pol ERP	Normalised (to Self)	92.90 93.90 100.90 101.70 105.70 106.50 107.30	Minor differences in direction of nulls and peaks, also minor differences in the size of the main lobes.	Plot 21 - 24
		ERP	92.90 93.90 100.90 101.70 105.70 106.50 107.30	45.5 dBW 44.5 dBW 38.9 dBW 37.3 dBW 42.3 dBW 32.3 dBW 39.0 dBW	Page 10

3/5 HORIZONTAL COMPONENT OF VRP

Azimuth	Plot Type		Service	Results (BeamTilt/ERP)	Plot Number & Page
270		Normalised (to self)	92.90 93.90 100.90 101.70 105.70 106.50 107.30	0.7° 0.5° 1.0° 0.4° 0.2° 0.7° 1.3°	Plot 25 - 28
FACE A	H-Pol	ERP	92.90 93.90 100.90 101.70 105.70 106.50 107.30	44.0 dBW 43.1 dBW 37.0 dBW 35.8 dBW 40.6 dBW 30.9 dBW 37.1 dBW	Page 17
110° FACE B	H-Pol	Normalised (to self) ERP	92.90 93.90 100.90 101.70 105.70 106.50 107.30 92.90 93.90 100.90 101.70 105.70 106.50 107.30	0.4° 0.3° 0.9° 0.6° 0.1° 0.6° 0.7° 44.4 dBW 43.1 dBW 37.3 dBW 35.9 dBW 40.8 dBW 30.9 dBW 37.2 dBW	Plot 29 - 32 Page 18
200° FACE C	H-Pol	Normalised (to self) ERP	92.90 93.90 100.90 101.70 105.70 106.50 107.30 92.90 93.90 100.90	0.5° 1.0° 1.2° 1.5° 1.5° 1.4° 44.3 dBW 43.6 dBW 37.3 dBW	Plot 33 - 36 Page 19

			101.70	36.2 dBW	
			105.70	40.4 dBW	
			106.50	30.3 dBW	
			107.30	36.5 dBW	
		Normalised	92.90	0.5°	
		(to self)	93.90	0.6°	
			100.90	0.4°	
			101.70	0.6°	
	H-Pol		105.70	0.5°	
			106.50	0.7°	Diat 27 40
290°			107.30	0.6°	PIOL 37 - 40
FACE D		ERP	92.90	35.1 dBW	Page 20
			93.90	34.6 dBW	
			100.90	34.2 dBW	
			101.70	34.1 dBW	
			105.70	40.6 dBW	
			106.50	32.9 dBW	
			107.30	38.2 dBW	

Best fit polynomials have been used to smooth the data on VRPs.

Vertical Component of HRPs at 1° Below the Horizon

Plot 3 Middle Channels - Normalised

Plot 4 Upper Channels - Normalised

REPORT 1.1 - P11/26

Horizontal Component of HRPs at 1° Below the Horizon

Plot 23 Middle Channels - Normalised

Plot 22: Lower Channels - Normalised

Plot 24 Upper Channels - Normalised

Plot 28 Upper Channels - Normalised

Plot 31 Middle Channels - Normalised

Plot 32 Upper Channels - Normalised

2

Horizontal Component of VRPs – Face C - 200°TN

Horizontal Component of VRPs – Face D - 290°TN

4

4/ CONCLUSIONS

The following conclusions can be drawn from the VHF FM antenna measurement survey for all channels measured:

- Both the Horizontal and Vertical components measurements had good correlation to the designed patterns.
- All measured beamtilts fall within ±1.5° of the designed beamtilt of 1.2°. Due to the broad nature of the main beam of the VRP, this has less than 1dB effect on the ERP. Beamtilt differences greater than 1° are highlighted in the Results Table in Section 3.
- The measured HRPs (for both components) show minor differences compared to the designed patterns. Areas of interest include:
 - Vertical very good correlation between design and measured.
 - Horizontal Antenna All measured patterns displayed narrower peaks than the designed pattern but are still within the uncertainty of this report. Offsets of approximately 5° between peaks and nulls are observed
- The omni design is achieved with variations of less than 2.5 dB between design and measured at all azimuths. Peaks and nulls are aligned.
- Combined measured ERP Maximum values (H&V) are:
 - o 92.9MHz = 48.3dBW, 93.9MHz = 47.5dBW, 105.7MHz = 46.9dBW -> Licensed = 47.5dBW
 - 100.9MHz = 42.8dBW, 101.7MHz = 41.6dBW, 106.5MHz = 37dBW, 107.30MHz = 43.6dBW -> Licenced = 45.5dBW

This antenna is concluded as operating very close to the design.

APPENDIX 1: TRANSMISSION PARAMETERS

The following details and parameters were used in calculations in this report:

SITE DETAILS

	Site Grid Reference	Service	Mast Base	Antenna Electrical	Antenna Details Panel Faces
Site (City)	Lat, Lon, (WGS84)	Freq. (MHZ)	(metres)	(metres)	
Sample Site	-xx.xxxxxx° yyy.yyyyyy°	92.90 93.90 100.90 101.70 105.70 106.50 107.30	1369	88	Face A =20°TN Face B =110°TN Face C =200°TN Face D =290°TN

¹ Australian Height Datum

ERP CALCULATION DETAILS

Service	Antenna Gain (dBd)	Antenna Factor (dB)	Cable Loss (dB)	Attenuation Loss (dB)	Other Loss (dB)	Final Cal Factor (dB)
92.90	-4.35	7.43	0.20	29.70	6.00	47.68
93.90	-3.65	7.52	0.20	29.70	6.00	47.07
100.90	-4.65	8.15	0.20	29.70	6.00	48.70
101.70	-4.85	8.21	0.20	29.70	6.00	48.96
105.70	-6.15	8.55	0.20	29.70	6.00	50.60
106.50	-6.25	8.62	0.20	29.70	6.00	50.77
107.30	-6.35	8.68	0.20	29.70	6.00	50.93

APPENDIX 2: EQUIPMENT AND FLIGHT PARAMETERS

The following equipment was used during the antenna reconstitution process as well as the actual flight details and measurement tolerances.

EQUIPMENT USED

	Serial	Calibration/Verification Date
Unmanned Aerial Vehicle	#Franky	N/A
Receiver System	#32950324	06/01/2017
Antenna System	#FMM01	26/12/2016
1m LCU195 Cable	#LCU195-1m	10/6/2016
Attenuation	#1237 ͇	10/6/2016

FM Measurement System

ACTUAL FLIGHT PROFILES

The following flight profiles were used:

Туре	Azimuth	Distance from Site	Depression Angle
	27°	120m	18 to -18
VRP	110°	120m	18 to -18
	200°	120m	18 to -18
	290	120m	18 to -18
HRP	Full	120m	1°

Actual Flight Paths (mapped in Google Earth) -HRP and 200 VRP

VALID SAMPLE TOLERANCES

No measurements outside the tolerances listed below were used in the pattern calculations.

Parameter	Tolerance
UAV Azimuth	±10°
UAV Pitch	±5°
UAV Roll	±5°
Depression Angle	±0.5°
Distance	±2.0m
Height	±1.0m

APPENDIX 3: UNCERTAINTY CALCULATIONS

The system model is indicated below. In this model, all sensitivity coefficients of the influence quantities are equal to 1. The common unit is the dB variation of the received field strength.

$$\Delta f = g_1 + g_2 + \dots + g_N$$
 (1)

where: Δf is the total dB variation of the fields due to uncertainty in and correction of the influence quantities, g_i . $g_1, g_2, ..., g_N$ are the corrections and uncertainties in the influence quantities expressed as dB variations.

ABSOLUTE

For Absolute measurements, positional accuracy is estimated to vary with a triangular distribution with an uncertainty of 1.0dB. Scattering effects from nearby objects has been assumed to be varying in a symmetric rectangular distribution with a span of 1.0dB. The Spectrum Analyser has a standard uncertainty with a normal symmetry of 1.5dB. The feeder loss has a standard rectangular distribution with an uncertainty of 0.2dB (from Calibrated Scalar Analyser). The antenna azimuth alignment has is a triangular distribution with an uncertainty of 0.5dB. The variation in antenna gain over the channels of interest is estimated to vary in a symmetric rectangular distribution with a span of 0.5dB.

Source of uncertainty	Unit	Uncertainty				
		Probability distribution	Semi span a or σ	Divisor d	u _i = a/d	u i ²
Positional Accuracy	dB	Triangular	1.0	√6	0.408	0.167
Scattering Effects	dB	Rectangular	1.0	√3	0.577	0.333
Spectrum Analyser	dB	Normal	1.5	2	0.750	0.563
Feeder Loss	dB	Rectangular	0.2	√3	0.115	0.013
Azimuth Alignment	dB	Triangular	0.5	√6	0.204	0.042
Antenna Gain	dB	Rectangular	0.5	√3	0.289	0.083
SUMS						1.2
Combined standard uncertainty, $uc = \sqrt{\Sigma(ui^2)}$						1.1
Coverage factor, k					2 (95% CI)	
Expanded Uncertainty , $U = k \times uc$					±2.2 dB	

RELATIVE

For Relative measurements, positional accuracy is estimated to vary with a triangular distribution with an uncertainty of 0.5dB. Scattering effects from nearby objects has been assumed to be varying in a symmetric rectangular distribution with a span of 1.0dB. The Spectrum Analyser variation has a standard uncertainty with a normal symmetry of 0.2dB. The feeder loss variation has a standard rectangular distribution with an uncertainty of 0.05dB. The antenna azimuth alignment has is a triangular distribution with an uncertainty of 0.5dB. The variation in antenna gain over a complete FM Band is estimated to vary in a symmetric rectangular distribution with a span of 0.2dB.

Source of uncertainty	Unit	Uncertainty				
		Probability distribution	Semi span a or σ	Divisor d	u _i = a/d	U i ²
Positional Accuracy	dB	Triangular	1.0	√6	0.408	0.167
Scattering Effects	dB	Rectangular	1.0	√3	0.577	0.333
Spectrum Analyser Var	dB	Normal	0.2	2	0.100	0.010
Feeder Loss Variation	dB	Rectangular	0.05	√3	0.029	0.001
Azimuth Alignment	dB	Triangular	0.5	√6	0.204	0.042
Antenna Gain Variation	dB	Rectangular	0.2	√3	0.115	0.013
SUMS						0.57
Combined standard uncertainty, $uc = \sqrt{\Sigma(ui^2)}$						0.8
Coverage factor, k					2 (95% CI)	
Expanded Uncertainty , $U = k \times uc$					±1.6 dB	

